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AFOSR Project 2304/A6 - Grant 86-0093 (Bershad)

During the period April. 15, 1988 - May 15, 1989, AFOSR supported
research work on the the stochastic behavior of the LMS and related
adaptive algorithms has yielded results in two major areas:

A. Digital Implementation of Stochastic Gradient Type Adaptive
Algorithms

The mathematical models developed in [15] were extended to analyze the
behavior of four types of digital implementations of the basic LMS
algorithm.

a) Nonlinear quantization effects in LMS and Block LMS adaptation were
compared on the basis of dynamic range, algorithm transient response and
stalling phenomena. It was shown [3] that the LMS algorithm requires
(1/2 Log 2 L - K ) fewer bits than the BLMS algorithm for the same
saturation and stalling effects (L=block length and K lies between .2 and 1).

b) Saturation effects in the LMS Adaptive Line Enhancer (ALE) were
studied using the saturation model developed in [15]. The ability of a
digitally implemented ALE to cancel a weak sinusoid in the presence of a
strong sinusoid and noise was investigated [4]. The mathematical model
and the simulations both showed a significant slowdown in cancellation of
the weaker sinusoid when the larger sinusoid caused the algorithm to
operate in saturation.

c) [15] studied the effect of a saturation non-linearity on the error term in
the weight up-date term in LMS adaptation. [15] was extended to consider
the effect of a saturation non-linearity on the entire weight up-date term
[5]. By comparison with the [15], there is no significant difference in the
behavior of digital implementations of the LMS algorithm whether round-
off occurs before or after multiplying the error by the data.

d) [15] was also extended to the study of LMS Echo-Cancellation when the
data is non-gaussian [6]. It had been previously shown that, when the
LMS algorithm is implemented using a sign detector (one bit quantizer)
for the error, serious performance degradation occurs for binary data as
compared to gaussian data. The saturation nonlinearity of [15] was used to
study the performanice of the binary and gaussian data models. The
number of additional bits for binary data for the same performance was
evaluated.
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B. LMS and RLS Performance Comparison for Tracking a Chirped Sinusoid
in Noise

The RLS adaptation algorithm is well-known to have a faster
transient response than the LMS algorithm when the input data is colored
and stationary. It is not clear that RLS is superior to LMS for tracking
non-stationary inputs. The chirped sinusoid is an example of a non-
stationary input for which it is useful to obtain a performance comparison
of the two algorithms.

[8] studies the ability of the LMS adaptive algorithm to track a fixed
amplitude complex chirped exponential buried in additive white gaussian
noise. The exponential is recovered using an M-tap predictor W (adaptive
line enhancer). When W is controlled by the LMS algorithm with forget-
ting rate v = AiPn (Pn is the input noise power), the output misadjustment
is dominated by a lag term of order v-2 and a fluctuation term of order v.
A value Vopt exists which yields a minimum misadjustment M?*min. Vopt and
Mmin were evaluated as a function of the signal chirp rate V, the number
of taps M, the noise power Pn and the signal-to noise ratio p.

[7] studies the ability of the exponentially weighted RLS adaptive
algorithm to track a fixed amplitude complex chirped exponential buried in
additive white gaussian noise. The exponential is adaptively recovered
using an M-tap predictor W. Five principal results of this work are: 1) the
performance of the algorithm, 2) the methodology of the analysis, 3) proof
of the quasi-deterministic nature of the data-covariance estimates, 4) new
analysis of RLS for an inverse system modelling problem, and 5) new
analysis of RLS for a deterministic time-varying model for the optimum
filter. It is shown that, when W is controlled by the RLS algorithm with
forgetting rate 13, the output misadjustment is dominated by a delay term
of order 13-2 and a fluctuation term of order 13. Thus, a value I3opt exists
which yields a minimum misadjustment M min. Popt and Mmin are
evaluated as a function of the signal chirp rate i', the number of taps M,
the noise power Pn and the signal-to noise ratio p.

The results in [7] and [8] were combined in [9] to yield tracking
performance comparisons between the two algorithms. The minimum
misadjustments for the two algorithms were compared for the same set of
input signal parameters. For a satisfactory predictor output signal-to-noise
ratio, LMS will track better than RLS (smaller misadjustment) unless p>>l

or Vy is sufficiently. Thus, this work leads to the very useful and
unexpected result that LMS usually tracks better.
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POTENTIAL AIR FORCE APPLICATIONS

A. The LMS algorithm is an extremely popular form of adaptation because
of its simplicity of implementation and well-understood behavior. One
would assume that it has found use in many Air Force systems where a
priori statistical information about the input signals is unavailable. These
applications could include echo-cancellation for hard-wire communication
systems, adaptive interference cancellation for spread-spectrum
communication systems, adaptive beam-forming, and adaptive noise
cancellation in jamming environments. In each case, digital implementa-
tions of the algorithm require an understanding of the number of bits
required for representing the individual mathematical operations that
comprise the algorithm. The results of the work described in Section A
help a designer to select the correct system parameters for fast and
efficient implementations of the algorithm.

B. When can one use the simpler, yet more slowly converging, LMS
algorithm in place of the faster converging, but significantly more difficult
to implement, RLS algorithm? This analysis suggests that LMS is superior
to RLS when tracking some non-stationary signals. The impact of this
result on adaptive systems used by the Air Force would be to retain the
simplicity of LMS for tracking environments.
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A Weighted Normnalized Frequency Domain LMS
Adaptive Algorithm

SHAUL. FLORIAN ANtD NEIL J. BERSHAD, Fmi.OW, IEFE

Absorner-Thio; paper pretents a gteneral Riltering wchene for obtains- tude square of the data for input power estimation. Thus,
ing! an input power e~tionatie foir -tettlmig the convergence pararneter p this extended theory is useful for the normalized fre-
itepstrately In each roreqtmenc, bits of a frequoenor, domnain LNIS adaptive qec oanLSfle ihpwretmtstathae
fller tl1)AF) aigtoritho. A linear filteringt operation lot performed on qec oai M itrwihpwretmae hthv
the ntnitmde siloare of the input data and incorporated directly Into recurisive descriptions and/or nonuniform weighted mov-
the altorithmn ar, a data-dependent time-varying atocha-Mir p~) ing average 131-161. A further pu rpose of this paper is to

The easn perfooraance of the aiihted norniaikred frequency do- -study. via Monte Carlo simulations, the transient behav-
msaui IAIS algearithin tWNVI3AF) 1% aoaily7ed tousin i.i.d. Caso~it-an data. ior of the WNFDAF when the initial settings of the power
amid the re~uiltc ore validated by the Monte Carlo, -ollutatig of the esiaeare varied.
atarithn. etmt

Thr %houlsotaion- are al.~, ii%ed tito rteod the welitht tranotienitwbhav- These results are a measure of how rapidly the algo-
lair. The Mrnuation,; aalggeut that %haurt insoothinit timMe are suffcient rithm can respond to changing input power levels-a
Fair rapid %eight comuieriteuce without largic fluctuationo; In the power problem which was not investigated in [31.
eat ioate% itaiicasitty afferti tran-lent weigtht behavior.

11. ANALYSIS

A. Mathiiala Model

1. INTROuulcrlON Using thi. FDAF model in [3), if the input processes to
REQIJENCY domain implementation of the LMS the FIFT's are wide-sense stat ionary over the observation

IFadlplive filler has advantages ovcr time implenienta- time. then disjoint spectral outputs are uncorrelated.i As-
lions. Improved convergence properties and reduced sumning the inputs are joint Gaussian random processes,

comutaioal omlextyareth tw mindvtae the disjoint bins of the FFT output provide statistically
comuttina copeiy2r1. tomi avnae independent outputs. Thus, each complex tap is operating
Il 1pl2t1n.fte rqec dmi MSaatv on independent data. Furthermore, sinte the FIFT opera-
ie apheicathionufth frequae dromai l over adapive lions are linear operations on the joint Gaussian input se-filerent heqtcc is o input powevris rtily m earment qtences, the FFT outputs are jointly complex Gaussian

feret he incoae bin thei alihm. Aoe re seente13 sequences.
muestrhe ancooratied freqencdormArn paper 131 The weight update equation, corresponding to a single
filler (NFDAF). The normalization invo~lved an estimate cmlxtp sgvnb 7
of the input power in each frequency bin using a uni- W(n + I) W(n) + pte(n) x*(n)
forinly weighted moving average window. The power es- W(n) I1I - 1! 1(n) I'] + pd(n) x(n)
tiiate was included directly in the frequency domain LMVS i
algoriihm. The statistical behavior of the NFDAF in 131()
was investigated using Gaussian data models. Closed form where
expressions were derived for the transient and steady-state n) = c m l xsa rweg to th nhieai nmean weight and mean-square error per bin.Wn)=cmlxcaawegtothntierin

The purpose (if this paper is to extend the analysis to a e(n) = error waveform = d(n) - y(n)
weighted NFDAF (WNFDAF)-an adaptive filter which y(n) = filter output = W(n) x( n)
inctirporates an arhitrary linear weighting on the magni- d(n) = reference waveform

x ( it) = input data sequence
NtKoui.crifil receivedl Mairchi 26. 19W6 rcvi'.cd January 19. 19R55 This u - adaptation coefficient.

%oa aur % %uappatrtcti by the VtS Air rairce oflue rof scientific fit 'arch The adaptive fitter -scheme incorporates the same input
tnls Cita wAmic:ive R6 th013 Proecmt ru lictucn Fngnerip signal model as in [1. The input sequences d(n) and x(n)

tI1tiver~itv it (uulitorniag. lIvine. (CA 92717, Ile im; with RAFAELI. hanifa. contain a desired component, buried in statistically inde-

N J Ohiarlt~~ k' willh tie lcparwaiiot oit Ioectricai Enpina'erinti. Ilni
vct%ioy ait 'aitiaonin, Ievine. CA 92717, on leave at ther Ltnbaratuire dc,. 'Ahimugih thi t I% re for white noise inputs. it is wit generally true since
%ipn;ais et Sy~tecw. File Soiericaire Wi leciricific. 9119 Gi-ntl(s Yvette, thge PrT bmnit are not %pectralty disjoint. However, the bins ame aptirouti-

nitey uncorrelated it the pe, r pecirurn of the signal chianges slowly
lil I its! Nullifies R9t211%7. iver the bandwith of a Aintile FF1 bin Ill.
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On the Probability Density Function of the LMS
Adaptive Filter Weights

NEIL 3. BERSHAD, FELLOW, IEEE, AND LIAN ZUO QU

Abstract-in this paper, the Joint probability density function of the Error S"gna
weight vector In LMS adaptation Is studied for Gaussian data models. s(n)
An exact expression Is derived for the characteristic function of the d~ n v
weight vector at time n + I conditioned on the weight vector at time Reerence Input

n. The conditional characteristic function is expanded in a Taylor se-
ries and averaged over the unknown weight density to yield a first-
order partial differential-difference equation In the unconditioned nAan:./.-s
characteristic function of the weight vector. Prmary nlvut Fier I

The equation is approximately solved for small values of the adap-
tation parameter and the weights are shown to be jointly Gaussian with /
time varying mean vector and covariance matrix given as the aolution Fig. I. LMS adaptive filter structure.
to well-known difference equations for the weight vector mean and co-
variance matrix. The theoretical results are applied to analyzing the
use of the weights in detection and time delay estimation. Simulations,
which support the theoretical results, are also presented. row-band line componeht in background noise using the

weight vector as a test statistic (Adaptive Line Enhancer
I. INTRODUCTION 171, 1101-[141), by using the filtered output as a test sta-

HE time domain LMS adaptive filter algorithm [I] has tistic 1131, [14], and for time delay estimation [15].
T found many applications in situations where the sta- More recently, the LMS algorithm has been used as a
tistics of the input processes are unknown or changing. canceller as part of a spread spectrum communication sys-
These include noise cancelling 121, line enhancing [31, tem. The output of the canceller acts as the input to a

14], [71, and adaptive array processing [5], 16]. The al- matched filter binary decision device. Knowledge of the
gorithm uses a transversal filter structure driven by a pri- statistics of the canceller output is crucial to predicting
mary input (Fig. I). The filter weights are updated itera- error probabilities for the system [161, 1171, [281.maryinpt (ig.I). he iltr wighs ar upate itra- In all four cases, knowledge of the first and second mo-tively based upon the difference between the filter output ments of the weights is not sufficient to calculate 1) re-arJ a reference input, so as to minimize the mean-square
error of the difference. ceiver operating characteristics (ROC's) relating detec-

The LMS algorithm has been very thoroughly investi- tion and false alarm probabilities for the detectors, 2) error

gated over a long period of time. Its transient weight mean probabilities for the binary decisions, and 3) estimation
and covariance matrix and mean square error behavior performance. Most often, via a central limit argument, it
have been evaluated precisely [6]-[9) for uncorrelated in- is assumed that the test statstic and/or the weights are
put data. Expressions for the transient mean square error Gaussian 114], [16), 1171. In some unpublished work [181,
as a function of the eigenvalues of the data covariance simulations suggest that the weights are Gaussian. How-
matrix Rxx have been given by a number of authors for ever, there is no existing theory supporting these simu-
both the real [6], [81, 19] and complex [6], [7] LMS al- lations. Some recent theoretical work [19] on the fre-
gorithms. quency domain LMS algorithm has shown that the single

Although the results in [6]-19] are useful for determin- complex weight is Gaussian in steady state. Further recent
ing the transient and steady-state mean and covariance of work has shown this result also holds in the transient case
the LMS algorithm, there are many situations where ad- after an initial phase of adaptation 1201.
ditional statistical information about the weight vector In this paper, the joint characteristic function of the
would be useful. These cases include detection of a nar weight vector in real LMS adaptation is investigated when

the inputs are zero mean stationary Gaussian sequences,
Manuscript received September 16, 1986; revised June I. 1988. This independent from iteration to iteration. Simulations which

work was supported in pan by the Air Force Office of Scientific Research support the theoretical analysis are also presented. The
under Project 2304/A6, Orant 86-0093.

N. J. Bershad it with th, Department of Electrical Engineering, Uni- results of the analysis are applied to i) detecting correla-
versity of California, Irvine, Irvine, CA 92717. tion between the primary and reference inputs using the

L. Z. Qu was on leave at the University of California Irvine, Irvine, weight vector as the input to a matched filter, and 2) es-
CA. He is now with the Beijing Research Institute, Beijing, People's Re-
public of China. timating the relative delay between the primary and the

IEEE Lol Number 8824475. reference.
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Abstract

Analog implementations of the LMS and Block LMS (BLMS) adaptive filtering

algorithms have been shown to be equivalent with respect to adaptation speed

and steady-state misadjustment errors. However, the BLMS algorithm offers

significant reductions in computational complexity due to block processing.

In this paper, digital implementations of the two algorithms are compared

with respect to finite word effects. The algorithm stalling phenomena is

studied using gaussian data models and conditional expectation arguments.

It is shown that the BLMS algorithm requires 1 log2 L - K) fewer bits for

the same stalling behavior (L - block length and K lies between .2 and 1,

depending on the precise definition of algorithm stalling). On the other

hand, the LMS algorithm requires log 2 L fewer bits than BLMS for the same

level of saturation behavior (transient response) at algorithm initialization.

Hence, overall the LMS algorithm requires N0/og2 L+K) fewer bits than the BLMS

algorithm for the same saturation and stalling effects.
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ABSTRACT

Digital implementation of the LS Adaptive Line Enhancer (ALE) introduces

certain nonlinear effects. This paper investigates feedback error signal

saturation effects on the ALE adaptation. A set of non-linear coupled

difference equations is derived by projecting the mean weight vector upon a

set of orthogonal basis functions.. These equations are used to study the

transient behavior of ALE for the case of one and two sinusoids in broadband

noise. Simulations are presented which support the results of the theoretical

model.

1. This work was supported by the Air Force Office of Scientific Research
under Project 2304/A6 Grant 86-0093.

2. Department of Electrical Engineering, University of California, Irvine,
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ARSTRACT

The effect of a saturation type non-linearity in the weight update

equation in LMS adaptation is investigated for a white gaussian data model.

Non-linear difference equations are derived for the weight first and second

moments that include the effect of a I-e- x saturation type non-linearity on

the update term driving the algorithm. A non-linear difference equation for

the mean norm is explicitly solved via a differential equation approximation

and integration by quadratures. The steady-state second moment weight

behavior is evaluated approximately for the nonlinearity. Using these

results, the tradeoff between the extent of weight up-date saturation, steady-

state excess mean-square-error and rate of algorithm convergence is studied.

For the same steady-state misadjustment error, the trade-off shows that

1) starting with a sign detector, the convergence rate is increased by nearly

a factor of two for each additional bit, 2) as the number of bits is

increased further, the additional bits buy very little in convergence speed,

asymptotically approaching the behavior of the linear model. Thus, by

comparison with previous results [3], there is no significant difference in

the behavior of digital implementations of the LUS algorithm whether round-off

occurs before or after multiplying the error by the data.
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Abstract

The effect of a saturation type error non-linearity in the weight
update equation in LMS adaptive echo-cancellation is investigated for

an independent binary data model. A nonlinear difference equation is
derived for the mean norm of the difference between the estimate and

the unknown filter to be estimated by the algorithm. The difference
equation is evaluated numerically. It is shown that far-end binary
data interference is much more deleterious to algorithm transient be-
havior than far-end gaussian data interference. The number of
additional bits for the same cancellation convergence rates for binary
vs. gaussian interference of the same power is studied as a function of

various system parameters.
Algorithm convergence rates are studied as a function of an

arbitrary probability density function for the far-end data. It is
shown that a binary pdf causes the worst degradation and a
gaussian shaped pdf causes the least degradation.
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ABSTRACT

This paper studies the ability of the exponentially weighted RLS
adaptive algorithm to track a complex chirped exponential signal buried in
additive white gaussian noise. The signal is adaptively recovered using an
M-tap predictor W.

There are five principal results of this paper: 1) the performance of
the algorithm, 2) the methodology of the analysis, 3) proof of the quasi-
deterministic nature of the data-covariance estimates, 4) new analysis of
RLS for an inverse system modelling problem, and 5) new analysis of RLS
for a deterministic time-varying model for the optimum filter. Specifically,
it is shown that,

1) when W is controlled by the RLS algorithm with forgetting
rate 03 = (1-%), the output misadjustment is dominated by a
delay term of order p-2 and a fluctuation term of order 3.
Thus, a value Pop exists which yields a minimum
misadjustment M m i n . opt and M m i n are evaluated as a
function of the signal chirp rate V, the number of taps M, the
noise power Pn and the signal-to noise ratio p. For
sufficiently small V,

opt = {(M + 1) p21/ 3 , M1min/= (3/4) Pn( M + 1) opt

2) The estimate of data covariance matrix R(k) satisfies

lir EI[R(k)- E[R(k)]] 2 I < <{E[R(k)] }2

k--oo



"LMS Performance for
Recovering a Chirped Sinusoid in Noise" 1

by

N. J. Bershad2,3 and 0. Macchi 3

April 1989

. This work was supported by the U. S. Air Force Office of Scientific
Research under Project 2304/A6, Grant 86-0093, by the National Center

for Scientific Research (CNRS), Government of France and the University
of Paris, Orsay.

2. Department of Electrical Engineering, University of California, Irvine,

California, 92717, USA.

3. Laboratory for Signals and Systems, National Center for Scientific
Research (CNRS-ESE), Plateau du Moulon, 91192 Gif-sur-Yvette, France.



ABSTRACT

This paper studies the ability of the LMS adaptive algorithm to track
a fixed amplitude complex chirped exponential buried in additive white
gaussian noise. The exponential is recovered using an M-tap predictor W.
When W is controlled by the LMS algorithm with forgetting rate v = PPn
(Pn is the input noise power), the output misadjustment is dominated by a
lag term of order v 2 and a fluctuation term of order v. Thus, a value vop t

exists which yields a minimum misadjustment Mm i n vop t and Mm i n are

evaluated as a function of the signal chirp rate V, the number of taps M,
the noise power Pn and the signal-to noise ratio p. For sufficiently small V,

I

o°p t = ['3(+ p)] J3P n (M+ 1)(1+P)Vopt

These results are new and important because they represent precise

analysis of a non-stationary deterministic inverse modelling system
problem. These results are in agreement with the form of the upper
bounds for the misadjustment provided in [4] for the determistic non-
stationarity.



J.~ L.-V

SUPERIORITY OF LMS OVER RLS FOR TRACKING A CHIRPED SIGNAL

Odile Macchi t and Neil Bershad2

I. Introduction

When an adaptive filter, receiving coloured inputs, has to track a nonstationary environment,
it is often said that the RLS algorithm will outperform the LMS one because it is known to converge
faster. However, convergence speed is a transient property, independent of the amount of noise,
while tracking is a steady-state performance and is therefore also influenced by the noise level. The
answer is not obvious. There is in fact no single answer, and it depends very much on the problem
under consideration. It has already been proved [1] that LMS can be superior in a context where the
optimal filter Wo(k) to be tracked is a zero-mean random function of time.

In this contribution we consider a case where Wo(k) has deterministic time variations. A
coherent signal s(k) with power Ps is buried in additive white noise n(k), with power Pn. It is known
that the SNR can be improved by implementing a predictor based on past observed samples

X(k) = (x(k-l), ..., x(k-M))T; x(k) = s(k) + nk) (1.1)(k) = (k)= W T X(k). (1.2)

In fact, if we consider the errors

e(k) x(k) X(k), (1.3)-k)sk) sk) (1.4)

e(k) =1i(k) + n(k), (1.5)

the optimal estimator Wo minimizing E(Iq21) is at the same time the optimal predictor minimizing
E(ler2), the noise sequence being independent.

When the sinusoid s(k) is subject to chirping with a chirp rate v, according to

s(k) = 428 exp ike + k? y + yJ, (1.6)

the optimal filter Wo(k) is time-varying. It therefore has to be tracked, for example, by means of an
adaptive algorithm of the kind

W(k) = W(k-l) + F(e(k), X(k) ... ), (1.7)
e(k) A x(k)- W(k-l)T X(k). (1.8)

The system is depicted in Fig. 1. This specific example occurs in practical HF radars.

The filter input x(k-l) is coloured since it contains a sinusoid. We are thus in the exact
situation where it has always been assumed that RLS will outperform LMS. In what follows we
show that this assumption is true in the case of a high input SNR, but in the situation of a poor SNR,
it is wrong: LMS will outperform RLS unless the chirp rate Is very high. The limiting case
conesponds to a fixed value c less than I of the so-called "non-stationarity degree", defined by

0 0. Macdhi Is with the Laboratolre des Signaux et Systkmes, CNRS-ESB, Plateau du Moulon, 91192 OIf-ur-Ytte
Cedex, FrAnce.
2 N. Bashad is with the Blectrical Engineering Dept., University of California, Irvine, CA 92717, U.SA.
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ABSTRACT
The Recursive Least Squares (RLS) algorithm II. IECOVURIG A NOSY CBhMlO lIAL .

is known to converge faster than the Least Hean I
Squares (LHS) algorithm when the environment is For a coherent signal f(k) buried ft Alta

stationary and the input is colored. It is then noise n(k), the SHR can be isproved by adding A,

often concluded that RLS will track better than number of samples H properly phase eotteeted by,

utS in a non-stationary environment. A an a transversal filter W. This Is the basie hdabehin the "aatv lintatonr ennhancert Show il nV

example of a non-stationary colored input, this behind the "adaptive line enhancer" show i. .0
paper studies a chirped sinusoid a buried in Fig. I. The device is adaptive because tht
additive white noise n. a can be adaptively predictor weights are controlled by th e( ia

recovered using an H-tap predictor W. When W is predictive error e(k). The following tteil il

controlled by the RLS algorithm with forgetting used: (lko'

rate S - (1-X), the output misadjustment2 noisy signal: x(k)-a(k) + n(k) (2.1)

is dominated by a delay term of order 6 past samples: X(k)-(x(k-l),...,i(k-ft)) ? (2.1)

end a fluctuation term of order B. Hence, a
value 0 exists which yields a minimum value, predicted signal: s(k) - V X(k) ? 2)
Similaro°havior by the LUS algorithm results in
another minimum misadjuatment. The ratio of the recovery error: ,(k) - s(k) - 5(k) (1.4)
minima does not depend on the chirp rate * control error: e(k) - x(k)-VT X(k)
but on H and the input SHR p. For a satisfactory. q(k) + a(k) * (26)
predictor output SNR, LHS will track better than
RLS (smaller misadjustment) unless I) p > I or The noise sequence n(k), with po _L. .. tA.L 3  h ie
2) * is sufficiently large. Thus, this work asmased independen.-C'We--ilgnfal is stmed ta,-
leads to the very useful and unexpected result b hre iuod aey.'~-
that IHS usually tracks better! be a chirped sinusoid, nouly'

I. INTRODUCTION o(k) - ep jJk9 + k. # + *j

Adaptive algorithms, which are capable of 2 a

tracking a non-stationary input, always exhibit h le 6
two contradictory features: (i) the convergence where # is a random phase with flat PtebM1uixuy
speed - a transient property which improves as d # sre led the tete Iteale0,

the forgetting rate (say B) increases, (ii) the and sb hereafter caled "chipnt teharete %
steady state fluctuations - due to measurement rhessibnle fo the nonatioer ed ha e t

and algorithm noise which degrade the performance the signal; P is the Signal paver and the ifpet
as B increases. It is often assumed that RLS
tracks a nonstationary environment better than p P 0 /Pl f

LS because it has a greater convergence speed. Clearly Eq. (2.7) cannot hold for *I1 k '
However, this assumption ta not sufficiently C "' (

justified because it) above is not considered. ( 4-. However, it is a reasonable "do,.3

indeed, tracking Is not a transient problem but a inside a time interval T ouch that JI#J(( do,

steady-state problem. Thus, the messurement and Due t9 Eq.2.6, inisigati o f the reeOV*tl 6MV

algorithm noise are of primary importance. In s(onl ) is equIile2t to atiniitation of the

this paper, a correct methodology is presented to control error Z(ie ). The Miniamition COA 1a

deal with the tracking comparison of RLS and UIS per tate r , using t R tF ( IM
for the non-trivial case of a noisy chirped filter state L, using eithe the Li (Mee& etiL
sinusoid. The sinueoid Is to be recovered by an III) or the LHS algorithm (SOC Sectiof ff), "
adaptive predictor. For both algorithms, the Consider the optilml filt:r W (k) (t1rf i o ) '

misadjustment or residual mean square error of varying when # iS nonsero) Which sould h .. 6

the adaptive filter output is properly minimized achieved ideally by both algorithms. vi, ' .

by optimizing the forgetting rate. The result- Using the notation '.. ),..

Ing B , U depends on the noise and the 
J*. j ,#

chirp1RJ rait( v is the step-size of LHS) . V -, **,, oil#. .... a

The corresponding misadjustmento InS and m - 2bc, b 2 , ..., NM2t
min n D- I c b .. b t I (its 10

are then be compared as a function of 9, P. and A . 9" ! ̂

H. In the most interesting case (small p. b exp J%; c t asp J (t1,t x
average *) IUS is found superior. 

." ,

it has been show in 131 that the pti1 filtW I
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EFFETS DE SATrURATION SUR L'ALGORITIIME LMS

EN ANNULATION D'EClIO AVEC DONNEES BINAIRES
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La plupart des etudes sur l'adeptation LMS en annulation d'dcho considtrent des donnees gaussiennes etlou un algorithme opg-
rant en modf: lindaire. La rdalite est quelque peu diflerente: - l'implantation numerique des algorithmes introduit des non in~srlies,
- les donnees sont souvent binaires. Dans cet article, un pararritre de saturation contr8le une non lin~aritt agissat sw rel'aTur qul
interv lent dans l'algorithme LMS. Cette non lindarit peat ainsi varier de fagon continue de Ia fonction signe (quantlficateur h I bit)
h In fonction linfaire (absence de quantification). LUs rdsultats mesur~s par l'6cho r~siduel montrent. que compar~es I des donnes
gausslernes. des donn~es binaires d~gradent dautant plus les performances que Is saturation est elevee (proche de Is foniction uigne).
La difference en Ire les nombres'de bits de lerreur n~cessaires pour des donp~es gaussiennes et binaires est Evalu&e poor urn me
echo rdsidvel en fonction de Ia puissance des donn~es lointalnes et du parantre de saturation.

* The effect of a saturation type error non-linearity in the weight update equation in LMS adaptive echo-cancellatlon is
investigated for an independent binary data model. A nonlinear difference equation is derived for the mean norm of t difference
between the estimate and the unknown filter to be estimated by the algorithm. The difference equation Is evaluated numneficdly. ft
is shown that far-end binary data interference Is much more deleterious to algorithm transient behavior than far-end gaussian dama
interference. The bit differential, for the same performance in a digital implementation of the algorithm, is studied for binay vs

*gaussian data as a function of the binary data power and the saturation parameter of the non-linearity.

II INTRODUCTION Le recepteur dolt reconstituer les donn~es lointalnes d(n) I
Quelques articles r~cents (1-5] ont dtudi6 i'algorithme LMS partir d'une observation d(n) qul est Ia somme de d(n), Cum

mnodiNi par Ia presence de non Iinfarites dans l'incrdment. bruit additif ng(n) et d'un signal d~cho des donn~es proebes
Dans 12,3] des non lindarites de type saturation sont utilisees x(n). Cet echo s'Erit WTX(n) oib W0 eat un filre icann de
pour moddliser les effets dus h Ia precision finie dans des im- Ion .gucur N et X(n) le vecteur des donn~es proches
pldnmentations numeriques de l'algorithme LMS. L 'hypoth~e X~)-(~) ~ ) ~ ) .. xn-N+1)
de donndes gaussiennes faite lors de ces etudes West plus tr~s P Tonr -upie (xen), o~ )n tls -n 2),tt .. ,ati xW -N ).
r~aiste dans le cas d'annulation d'6cho de donndes. Poura seuprmr lho o'nt dutiliseu u dre attfWn.

LP, cas de donn~es binaires en annulation d'echo a Wt etudiM inlderu 'nred ~etu otaErr
dans [4,5] lorsque Ia frnnction signe apparalt dans l'aigorithme
LMS. 11 est montrd qut par rapport h c4es donnies gaussiennes, e(n) =do(n) + n 9(n) - VT(n) X(n) )
des donn~es binaires de mtme puissance d~gradent les perfor- Oi
mances de l'ann'ulation d'Echo (pour un mtme pas d'adaptation). V(n) - W(n) - W0.
Tel West pas le cas pour I'algorlthme LMS classique oib Ia
densit6 de probabilite des donn~es nintervient pas. On suppose que lea termes de I~quation (1) oait

Cet article etend les rdsultats de (2,4]. It analyse lea effets inddpendants deux h deux. Les dounss prochos 3(n) SWa
des donndes binaires, sur Ia vitesse de convergence de inddpendantes, binaires, de puissance A et I& loagust. N &k
l'algorithme, lorsque le nombre de bits utilists pour reprdsenter filtre adaptatif est suffisamment grands pow que ka softle
1erreur qul apparalt dans l'incrf ment de l'algorithme vanie de I VT (n)X(n) du fliltre difference V(n) Wot cansdrdf Comm
(fonction signe) A l'intini (cas lin~aire). Los rdsuitats permet- gausslenno (4].
tent notamnment d'dvaluer le nombre de bits suppidmentaires Le signal d'erreur qui sort h pilotet les coeofloats de
n~cessaires lorsquon passe du cas gaussien mu cas binaire pour I'annuleur eat aussi Is soul signal dont dispo s k~otsr
une mtme performance T1annulation d'6cho. Une restitution corrects do ne pourra donc tre busq'x

tine bonns reduction do lMcho rfsiduei VT(n) X(4) CodPs
11 ANALYSE 6tre obtenu par lalgorithms LMS do pes d*adag t
1. Algorlthme LMS modirit

Le probibme do l'annulation d'cho, Illustr6 par Ilfgue1 W(n + 1) - WV(n) + 1,1 t(n) X(n),
reprisente un systbme do transmlIssign bUatdrale do donnds4)


